潛伏在工廠的隱形“大鯨”

虎嗅調(diào)研團(tuán)隊 虎嗅 2021-01-27 10:17:08

你是否想過,如果說人類正困在系統(tǒng)里,那么機(jī)器在干什么?

2.png


圖源:見水印

 

在制造工廠里,我們看到機(jī)器有了“思想”并能相互“溝通”,它們按照不同的需求自動處理訂單、實行自主生產(chǎn):

3.jpg

憑借最新信息技術(shù)和先進(jìn)制造業(yè)技術(shù)的融合, 機(jī)器在工廠里能處理的任務(wù)早已超出了我們的認(rèn)知,不僅會支持決策,還會代替人類做出實時、大規(guī)模決策甚至預(yù)測,而這背后的關(guān)鍵支撐則是工業(yè)互聯(lián)網(wǎng)。

這種變革具體是如何發(fā)生的?

在工業(yè)互聯(lián)網(wǎng)領(lǐng)域,都有哪些成長性、創(chuàng)新力的服務(wù)?

為此,首期「大鯨榜」將目光聚焦在工業(yè)互聯(lián)網(wǎng)領(lǐng)域。虎嗅調(diào)研團(tuán)隊攜手第三方專業(yè)評審團(tuán),歷經(jīng)三個多月的檢索、調(diào)研走訪、細(xì)致評估,最終評選出該領(lǐng)域最具成長力的30家企業(yè),這既是我們對工業(yè)互聯(lián)網(wǎng)領(lǐng)域優(yōu)秀企業(yè)和項目的一份總結(jié),也期望通過挖掘其中出色的解決方案及落地案例,去回答,究竟靠數(shù)字化,可以做對什么、能夠帶來哪些價值。

4.jpg

「大鯨榜」來自虎嗅·大鯨計劃,關(guān)注企業(yè)服務(wù)領(lǐng)域,旨在通過榜單評選去發(fā)現(xiàn)更多有實力但仍潛于水面之下不為人知的大鯨企業(yè)——成長型公司

榜單的完整名錄如下,排名不分先后:

5.jpg

上榜企業(yè)畫像:

基于此次調(diào)研收集到的信息,我們總結(jié)出上榜企業(yè)的幾點(diǎn)畫像特征:

1. 深圳、北京是工業(yè)互聯(lián)網(wǎng)創(chuàng)業(yè)公司的重鎮(zhèn)

總體來看我國的制造業(yè),在長三角、環(huán)渤海、京津唐及粵港澳大灣等區(qū)域相對發(fā)達(dá),但本次上榜的三十家企業(yè)分布則并非如此,主要集中在深圳、北京——有12家總部在深圳,其次是位居北京的企業(yè)數(shù)量為11家,地理位置優(yōu)越性明顯:

廣東地區(qū)工業(yè)基礎(chǔ)雄厚——制造業(yè)在廣州有著悠久的傳統(tǒng),在深圳經(jīng)歷了現(xiàn)代化,工業(yè)互聯(lián)網(wǎng)產(chǎn)業(yè)發(fā)展在這里有得天獨(dú)厚的優(yōu)勢;而北京地區(qū)更多受益于政策支持以及強(qiáng)大的科研高校資源。

6.jpg

2. IBM、西門子和華為是該領(lǐng)域的“黃埔軍校

工業(yè)智能化的實現(xiàn)需要跨領(lǐng)域和跨學(xué)科的復(fù)合型技術(shù)人才和專業(yè)技能,人才構(gòu)成來看,研發(fā)人才為57%,工業(yè)領(lǐng)域人才占比約為36%;聚焦在核心人員的履歷上,可以看到他們多有如IBM、微軟、華為及西門子等科技巨頭企業(yè)的工作背景,以及如清華、哈工大、麻省理工學(xué)院等海內(nèi)外理工類高校學(xué)歷,保證技術(shù)的迭代和創(chuàng)新。

7.jpg

強(qiáng)大的科研力也充分反映在企業(yè)研發(fā)的技術(shù)產(chǎn)品上:湃方科技的人工智能芯片,通過AI芯片及算法基因與工業(yè)設(shè)備的深度融合,幫助構(gòu)建起競爭壁壘;朗坤智慧作為傳統(tǒng)電力行業(yè)老牌企業(yè),仍堅持技術(shù)創(chuàng)新,擁有垂直行業(yè)的核心算法,并自研工業(yè)平臺和時序庫;亮風(fēng)臺的研發(fā)投入占比較高,核心團(tuán)隊和技術(shù)構(gòu)成具有較強(qiáng)實力,尤其是在AR云平臺領(lǐng)域,并憑借技術(shù)競爭力擁有較大的市場優(yōu)勢;威努特?fù)碛袊鴥?nèi)首款獨(dú)立知識產(chǎn)權(quán)的漏洞挖掘工具,首款工業(yè)防火墻,為企業(yè)提供可靠的統(tǒng)一安全管理解決方案;明略科技擁有國家級人工智能平臺,及自主知識產(chǎn)權(quán)的核心算法,已在制造業(yè)、交通、能源等多行業(yè)應(yīng)用。

3. 工業(yè)互聯(lián)網(wǎng)在若干細(xì)分行業(yè)的深入度差異較大

制造業(yè)門類眾多、水平參差不齊,數(shù)字化轉(zhuǎn)型的切入點(diǎn)及難度也各不相同:

比如在鋼鐵及石化行業(yè),典型的應(yīng)用場景主要是“設(shè)備全生命周期管理、智能化生產(chǎn)及供應(yīng)鏈協(xié)同”;煤炭行業(yè)存在生產(chǎn)風(fēng)險高、物流成本高等痛點(diǎn),相關(guān)解決方案則更聚焦于“安全生產(chǎn)、智慧運(yùn)輸、綜合管理”。

從行業(yè)應(yīng)用現(xiàn)狀來看,目前較集中于鋼鐵、石化、煤炭、紡織、通用器械、汽車行業(yè),而在新能源、船舶、航空航天等應(yīng)用不多。從應(yīng)用深度來看,只在紡織行業(yè)做到了“垂直行業(yè)服務(wù)一條龍”,如致景科技,其旗下有“百布”、“全布”、“云版房”、”致景金條“、“致景智慧倉物流園”等業(yè)務(wù)板塊,全面打通紡織服裝行業(yè)的信息流、物流和資金流。

4. 2020,加速擴(kuò)張

過往,工業(yè)互聯(lián)網(wǎng)的發(fā)展驅(qū)動力主要為“政府引導(dǎo)”,但在2020年是一個關(guān)鍵節(jié)點(diǎn),5G商用的普及、以及年初突發(fā)的新冠疫情(讓不少企業(yè)認(rèn)識到數(shù)字化轉(zhuǎn)型的重要性),一定程度上促進(jìn)了工業(yè)互聯(lián)網(wǎng)的推廣。

上榜企業(yè)在2020年均做了戰(zhàn)略調(diào)整,成立5年內(nèi)的企業(yè)重點(diǎn)在擴(kuò)充人員、產(chǎn)品研發(fā)創(chuàng)新和生態(tài)合作伙伴搭建上;而成立時間超過5年的則相對更注重開拓新領(lǐng)域和新行業(yè)。

此外,截止2020年11月份,四成上榜企業(yè)處于B輪融資階段、二成處于C/D輪階段,這反映了多數(shù)企業(yè)已經(jīng)歷了市場的認(rèn)證及投資人的認(rèn)可;也說明業(yè)界普遍看好產(chǎn)業(yè)前景,工業(yè)互聯(lián)網(wǎng)從“政府引導(dǎo)”轉(zhuǎn)變?yōu)椤笆袌鲆龑?dǎo)”,中小企業(yè)不斷涌現(xiàn),也促進(jìn)了產(chǎn)業(yè)創(chuàng)新活力的提升。

制造業(yè)的深刻變革及其阻礙

在搜尋、調(diào)研高成長企業(yè)的過程中,我們對工業(yè)互聯(lián)網(wǎng)領(lǐng)域里的變化有了真實的感知:一方面,大數(shù)據(jù)、人工智能等新一代信息技術(shù)與制造業(yè)正在加速融合,另一方面,基于工業(yè)互聯(lián)網(wǎng)平臺,也延伸出了新業(yè)態(tài)。

總的來說,有哪些新趨勢和實踐亮點(diǎn)?

1. 人、機(jī)器、企業(yè)共同經(jīng)歷數(shù)據(jù)革命

數(shù)據(jù)分析對企業(yè)運(yùn)營和決策影響重大,并在重塑企業(yè)競爭力,通過下表可以看到:相對領(lǐng)先的企業(yè)十分重視數(shù)據(jù)方面技能的提升,表現(xiàn)在更看重具有技術(shù)思維和數(shù)據(jù)思維的人才、發(fā)展機(jī)器學(xué)習(xí)及部署人工智能系統(tǒng)等。

8.jpg

先進(jìn)技術(shù)的應(yīng)用也將加劇這一變革,比如被認(rèn)為是推動工業(yè)互聯(lián)網(wǎng)智能化的關(guān)鍵“數(shù)字孿生(Digital Twin)”,通過構(gòu)建數(shù)字空間,能使企業(yè)在實際投入生產(chǎn)前即能在虛擬環(huán)境中優(yōu)化、仿真和測試。且已有不少市場應(yīng)用,如傲林科技通過數(shù)字孿生算法模型為汽車行業(yè)客戶量化分析、優(yōu)化運(yùn)營,最終達(dá)成企業(yè)物料耗用平均降低38%、庫存占用平均降低39%。

2. AR技術(shù)應(yīng)用在疫情期間價值凸顯

AR主要用于輔助工業(yè)作業(yè):首先可以給出工人額外信息顯示和引導(dǎo),其次是遠(yuǎn)程指導(dǎo)系統(tǒng),降低高技術(shù)工作對現(xiàn)場人員的依賴。

“通過AR遠(yuǎn)程協(xié)作系統(tǒng)HiLeia,在遠(yuǎn)程維修、作業(yè)指導(dǎo)、補(bǔ)助設(shè)備點(diǎn)檢、遠(yuǎn)程稽核、培訓(xùn)員工等業(yè)務(wù)場景協(xié)助保持多家企業(yè)的正常運(yùn)營,對后疫情時代的工業(yè)發(fā)展具有重大意義?!?/p>

——評委點(diǎn)評亮風(fēng)臺

3. 工業(yè)機(jī)器人“大規(guī)模崛起”,工廠開始“無人化”

制造業(yè)“機(jī)器換人”的趨勢已愈發(fā)明顯,且增長力強(qiáng)勁——研究公司Robo Global預(yù)測全球工業(yè)機(jī)器人市場將從450億美元(2020年)上升到730億美元(2025年)。尤其是在輕工業(yè)領(lǐng)域,幫助實現(xiàn)柔性生產(chǎn)的智能智造機(jī)器人正被大量應(yīng)用。如斯坦德機(jī)器人在華為、富士康等物流發(fā)揮關(guān)鍵作用,節(jié)約人力18-26人,提升效率70%。

另外,偏遠(yuǎn)設(shè)備的無人機(jī)巡檢、自動駕駛運(yùn)輸?shù)榷荚谕苿庸S的“無人化”。

4. 依托平臺延伸出工業(yè)電子商務(wù)、供應(yīng)鏈金融新模式

以思貝克為例,其“基于工業(yè)互聯(lián)網(wǎng)平臺的供應(yīng)鏈金融服務(wù)商,有效監(jiān)控企業(yè)的經(jīng)營狀況及信用情況,打通資金進(jìn)入實體經(jīng)濟(jì)的安全通道,同時解決中小企業(yè)融資難等問題。”

此外,“企業(yè)上云、共享制造”也給中小企業(yè)謀求發(fā)展提供了新出路,如通過產(chǎn)能共享、設(shè)備租賃等模式既能顯著降低企業(yè)投入成本,也能使得原本被資產(chǎn)、技術(shù)等原因擋在門外的企業(yè)進(jìn)入市場。

5. 加速實現(xiàn)“零庫存”,更快速響應(yīng)客戶

在實現(xiàn)零庫存的目標(biāo)驅(qū)動下,供應(yīng)鏈、采購、物流的價值被極大釋放:供應(yīng)方式上基于平臺打造現(xiàn)代供應(yīng)鏈,根據(jù)需求動態(tài)調(diào)整供應(yīng)計劃;物流上通過智能跟蹤,實現(xiàn)全流程的可視化監(jiān)控,降低物流成本,提高運(yùn)力,提升客戶體驗和滿意度。

值得注意的是,除了提供統(tǒng)一化、模塊化的產(chǎn)品,制造業(yè)企業(yè)需要同時兼顧個性化、定制化需求的用戶,該如何全程響應(yīng)用戶需求無疑是一大挑戰(zhàn)。此次調(diào)研中,酷家樂為家居行業(yè)提供的云設(shè)計功能,“打通了前端設(shè)計與后段定制化生產(chǎn),為家居品牌提供更快捷的設(shè)計-生產(chǎn)途徑,有效解決同類產(chǎn)品庫存問題,也為消費(fèi)者提供定制化選擇機(jī)會”,值得借鑒。

9.jpg

綜上,上榜企業(yè)的產(chǎn)品/服務(wù)基本成型,且覆蓋了核心業(yè)務(wù)優(yōu)化、生產(chǎn)保障能力提升和社會化資源協(xié)作等核心場景應(yīng)用,意味著產(chǎn)業(yè)或已邁出探索階段,即將進(jìn)入增長期。

10.jpg

但是,當(dāng)前在該領(lǐng)域仍面臨較多問題,發(fā)展存在極大挑戰(zhàn):

1. 數(shù)據(jù)基礎(chǔ)仍較為薄弱

制造業(yè)領(lǐng)域的數(shù)字化轉(zhuǎn)型流程基本仍要依次沿著自動化、信息化、網(wǎng)絡(luò)化、智能化去發(fā)展,前文提到了“數(shù)據(jù)是智能化的基本前提”,但在國內(nèi)大量制造業(yè)企業(yè)還未完成自動化改造,數(shù)據(jù)采集仍較為困難,更別提企業(yè)數(shù)據(jù)的有效打通;此外,出于保密、安全上的考慮,制造業(yè)企業(yè)對數(shù)據(jù)全面上云有較強(qiáng)顧慮,工廠的數(shù)字化整體面臨極大挑戰(zhàn)。

11.jpg

2. 標(biāo)準(zhǔn)化較低,市場教育困難

“對于工廠來說,能不能實現(xiàn)數(shù)據(jù)化,進(jìn)而做到快速生產(chǎn)、靈活生產(chǎn),現(xiàn)在已經(jīng)不是一個能不能活得更好的問題,而是一個生死問題。”

—— 高世太(藍(lán)馳投資總監(jiān))

雖然,工業(yè)領(lǐng)域的數(shù)智化轉(zhuǎn)型已成為共識。目前整體來看,多數(shù)產(chǎn)品方案形態(tài)遠(yuǎn)未標(biāo)準(zhǔn)化,企業(yè)各異的需求同時涉及到軟硬件等多方面的開發(fā),還需要服務(wù)商深入理解工業(yè)具體工作流程,項目執(zhí)行難度大、速度慢,難以讓客戶短期看到效果,企業(yè)意愿不強(qiáng)。

此外,制造業(yè)企業(yè)在大數(shù)據(jù)實時路徑如何選擇、投入產(chǎn)出如何評估、業(yè)務(wù)流程如何配合等方面也普遍存在困惑。

3. 在中小型企業(yè)里推進(jìn)緩慢

制造業(yè)門類眾多、差異巨大,不同規(guī)模的企業(yè)轉(zhuǎn)型方式也各不相同。由于數(shù)字化的改造成本高,目前在規(guī)模大的制造企業(yè),尤其是大型重工業(yè)、及行業(yè)頭部企業(yè)的應(yīng)用較多,而對大量的中小型制造業(yè)企業(yè)而言,由于不同工廠的情況不同,項目經(jīng)驗難以復(fù)制,落地周期時間較長,造成投入產(chǎn)出的價值不夠清晰,數(shù)字化轉(zhuǎn)型明顯較為困難。

4. 技術(shù)還有提升空間

目前很多新技術(shù)/產(chǎn)品功能還較為有限,主要應(yīng)對各種工業(yè)場景下的小部分——如物流搬運(yùn)、生產(chǎn)加工上。此外,在未知缺陷監(jiān)測、數(shù)據(jù)分析等方面仍依賴人工矯正,無法與工廠的熟練老師傅相比,且缺少分析和解決問題(即決策)的能力。

5. 缺乏跨領(lǐng)域?qū)I(yè)人才

既熟悉工業(yè)業(yè)務(wù)流程,又掌握先進(jìn)技術(shù)的相關(guān)人才稀少,這也給高校人才培養(yǎng)提出了新挑戰(zhàn)。

說明:

文中數(shù)據(jù)及案例描述來自企業(yè)填報資料,參評企業(yè)對其信息的真實及準(zhǔn)確性負(fù)責(zé),統(tǒng)計時間為2020年11月。

評選機(jī)制:虎嗅大鯨榜團(tuán)隊經(jīng)過前期案頭研究、企業(yè)走訪、以及專家訪談,首先搭建了一個針對工業(yè)互聯(lián)網(wǎng)服務(wù)商的評選體系,評選圍繞三大維度、涉及二十四個評價指標(biāo)。其后我們邀請了十余位行業(yè)專家及領(lǐng)域知名投資人,秉持著高度正直的態(tài)度,一同對參評企業(yè)申報材料進(jìn)行仔細(xì)分析、查證、評估和交叉驗證,最終評選出30家高成長性企業(yè)。


長按二維碼關(guān)注我們